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A FRAMEWORK FOR REDUCED ORDER MODELING WITH
MIXED MOMENT MATCHING AND PEAK ERROR OBJECTIVES∗
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Abstract. We examine a new method of producing reduced order models for LTI systems
which attempts to minimize a bound on the peak error between the original and reduced order models
subject to a bound on the peak value of the input. The method, which can be implemented by solving
a set of linear programming problems that are parameterized via a single scalar quantity, is able to
minimize an error bound subject to a number of moment matching constraints. Moreover, because
all optimization is performed in the time domain, the method can also be used to perform model
reduction for infinite dimensional systems, rather than being restricted to finite order state space
descriptions. We begin by contrasting the method we present here with two classes of standard model
reduction algorithms, namely, moment matching algorithms and singular value–based methods. After
motivating the class of reduction tools we propose, we describe the algorithm (which minimizes the
L1 norm of the difference between the original and reduced order impulse responses) and formulate
the corresponding linear programming problem that is solved during each iteration of the algorithm.
We then prove that, for a certain class of LTI systems, the method we propose can be used to produce
reduced order models of arbitrary accuracy even when the original system is infinite dimensional. We
then show how to incorporate moment matching constraints into the basic error bound minimization
algorithm, and present three examples which utilize the techniques described herein. We conclude
with some comments on extensions to multi-input, multi-output systems, as well as some general
comments for future work.
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1. Introduction. The study of model order reduction (MOR) is a problem that
has pervaded the engineering community for over thirty years. Stated simply, MOR
attempts to replace a system description that is deemed “complex” by a simpler,
approximate model that still accurately represents the salient features of the original
system. The motivation for the inception of MOR tools from a simulation standpoint
is clear: problems with fewer components, in general, take less time to simulate,
so creating tools which reduce the size of a model without significantly sacrificing
accuracy has great potential impact.

Much of the original work in MOR has roots in the systems and control commu-
nity, with Moore’s work on principle component analysis [19] and Glover’s work on
optimal model reduction in the Hankel norm [12] as the basis for a number of model
reduction tools that are still used today. Outside of the realm of control, a great deal of
attention has been placed on the development of MOR tools for simulation purposes:
Bashir et al. [2] investigated a method of producing reduced order models for simula-
tion when the initial condition is known to lie in a certain prespecified set; Gad and
M. Nakhla [11] proposed a method for producing reduced order models for predicting
the DC solution of large nonlinear circuits; N. Nakhla, M. Nakhla, and Achar [20] de-
vised a method for model reduction of interconnect circuits; Rewienski and White [23]
and Bond and Daniel [5] devised separate approaches to MOR of nonlinear circuits
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746 KEITH R. SANTARELLI

via piecewise linearization and projection; Roychowdhury [24] developed a method for
the MOR of time-varying systems that has applications for modulation and sampling-
type systems; Dong and Roychowdhury [8] developed a method of model reduction
for nonlinear systems via representation by piecewise-polynomial functions; Feldmann
and Freund [10] investigated a moment matching method for linear networks called
the Padé via Lanczos method, and Odabasioglu, Celik, and Pileggi [21] developed a
passivity-preserving MOR method for linear networks; Coelho, Phillips, and Silveira
[7] investigated an optimization-based method where a reduced order model is found
by solving a nonlinear least squares problem; Bui-Thanh, Willcox, and Ghattas [6]
considered the problem of finding a reduced order model for a class of parameter-
ized systems. The paper by Gugercin and Antoulas [13] provides a comparison of
the performance of several different linear model reduction techniques that are used
today.

1.1. MOR for LTI systems: Moment matching vs. singular values. As
the focus of this paper revolves around MOR for LTI systems, we briefly review two
of the main classes of model reduction methods for LTI systems, along with their
associated benefits, as a means of motivating the particular problems and techniques
that we investigate here. Two MOR methods for LTI systems that are popular in the
literature today are methods which perform moment matching of transfer functions,
and methods which compute singular value decompositions (SVDs) of a linear oper-
ator that is associated with the state space description of the LTI system undergoing
reduction. Moment matching methods operate by constraining either the value of the
transfer function or some derivative (moment) of the transfer function to be the same
for both the original and reduced order models at a specified set of frequencies (i.e.,

G(msl
)(sl) = G

(msl
)

r (sl), l = 1, 2, . . . , L, where G(s) represents the transfer function
of the original system, Gr(s) represents the transfer function of the reduced order
system, and sl ∈ C represent N complex frequencies to be matched). One advantage
of moment matching is that it can be used to preserve key frequency response char-
acteristics between the original and reduced order systems. For instance, moment
matching methods can be used to ensure that the DC gain for a reduced order sys-
tem is the same as in the original system, an important property for systems which
are primarily driven by step inputs. A disadvantage of these methods, however, is
that, in general, they do not provide bounds on the error between the response of the
original system and the response of the reduced order system for arbitrary inputs.
Hence, while moment matching methods provide a guarantee that the steady-state
response will be the same for both the original and reduced order models for a finite
set of sinusoidal inputs, there are typically no provable guarantees that the response
of the reduced order system will be accurate at frequencies other than the matching
frequencies.

By contrast, SVD-based methods for model reduction do provide bounds on the
error between the responses of the original and reduced order systems. Based upon
computing the singular values of a joint controllability/observability measure, these
methods produce a truncated state space description of the original system to serve
as a reduced order approximation. When the inputs of interest are finite power sig-
nals, the outputs of the reduced order model are guaranteed to be “close” to the
outputs of the original model in the sense that the power in the difference between
the original system output and reduced system output is small.1 While such results

1A similar statement exists when one considers inputs that are finite energy signals.
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provide a notion that the reduced order models are “good” for a wide range of in-
puts, classical SVD-based methods suffer from the fact that they do not incorporate
moment matching constraints into the problem set-up. Hence, if exact matching of
certain frequency response properties between the original and reduced order models
is critical, SVD-based methods are typically not the method of choice.

If possible, it is clearly desirable to develop MOR tools which can both incor-
porate moment matching constraints into the reduction problem, and provide error
bounds for general classes of inputs. To date, however, results that provide for mixed
formulations which incorporate both error bounds and which simultaneously preserve
general properties of the frequency response are limited. Phillips, Daniel, and Silveira
[22] provide an algorithm which, while not able to preserve moment matching prop-
erties explicitly, does provide an SVD-based method that is guaranteed to preserve
passivity of the reduced order model. Gugercin, Antoulas, and Beattie [14] explain
how the solution to a model reduction problem which minimizes the H2 norm of the
corresponding error system is guaranteed to match moments at mirror images of the
pole locations of the reduced order model (e.g., G(−sl) = Gr(−sl), where sl ∈ C

is a pole of the reduced order model Gr(s)). This result is limited, however, since
the matching frequencies cannot be chosen arbitrarily. Moreover, certain useful fre-
quencies cannot be matched (such as frequencies along the imaginary axis), since the
reduced order models are stable and, hence, Re{sl} < 0.

Some recent work by Astolfi in [1] considers a technique which can simultaneously
match moments and produce small error bounds via the introduction of a free param-
eter into the state space description of the corresponding reduction problem. To the
best of the author’s knowledge, the result is the first of its kind and, hence, takes an
important first step into investigating the problem of mixed moment matching/error-
bounding reduction methods. Nevertheless, when attempting to use model reduction
tools for the inherent purpose of simulation, the error bounds produced by this tool—
and the error bounds produced by all SVD-based reduction methods—are not the
most desirable because of the way they measure error. One of the primary motiva-
tions of the work we present herein is that error is measured in a manner that is more
useful for designers than the standard measures of error. We now present an example
to illustrate the main issue along with a proposed resolution.

1.2. Measures of error: Power vs. peak amplitude. Figure 1.1 illustrates
a hypothetical example where the spikey signal represents the output of an original
full order system and the remaining signal represents the output of a reduced order
model that was created using an SVD-based technique. The moral of the example is
this: an SVD-based method will consider the two responses to be “close” because the
power in the difference between the two signals is apparently small (note that the large
spike in the full order signal is very narrow and, hence, contributes very little energy).
While such a measure of closeness may be appropriate for certain applications, if the
signals depicted in Figure 1.1 represent a critical parameter whose value should never
exceed 1, then it is clear that the reduced order model does not adequately represent
the original model since the response of the full order system significantly exceeds 1
while the response of the reduced order system stays well below 1.

From a simulation perspective, a somewhat more useful notion of error can be
measured in terms of peak amplitude. Formally, if we consider right-sided continuous-
time signals y : [0,∞) → R, then the peak amplitude can be taken as the standard
infinity norm:

(1.1) ||y||∞ = sup
t≥0

|y(t)|.
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Fig. 1.1. Hypothetical responses of an original and reduced order system produced via an SVD-
based method.
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Fig. 1.2. Depiction of a full order output signal surrounded by an “error region.”

In the context of model reduction, if we define y(t) as the response of an original
system and yr(t) as the response of a reduced order system for an identical input
u(t), it is reasonable to desire that ||y − yr||∞ be a small quantity. Indeed, if for a
particular pair y(t) and yr(t) we define ε = ||y − yr||∞, then it immediately follows
from the definition in (1.1) that

(1.2) |y(t)− yr(t)| ≤ ε ∀t ≥ 0.

Figure 1.2 depicts the meaning of (1.2) graphically. In the figure, the black signal
represents the response of the original system y(t), and the surrounding area denoted
“error region” represents a desired region in which one would like the response of a
corresponding reduced order model yr(t) to lie. In the context of (1.2), the “height”
of the error region at every given time t is 2ε, indicating the desire for yr(t) to be
close to y(t) uniformly over all times.

1.3. Problem formulation: L1 norm minimization. We now focus on for-
mulating the formal problem to be investigated in this paper. Our focus is limited
strictly to LTI systems, for which we wish to develop bounds of the following nature:
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if we denote by L∞(R+)

(1.3) L∞(R+) =

{
u : [0,∞) → R : sup

t≥0
|u(t)| < ∞

}
,

then for every input u ∈ L∞(R+), we wish to find some (hopefully small) real number
M > 0 such that

(1.4) ||y − yr||∞ ≤ M ||u||∞.

If such a bound exists for an original system model and a reduced system model
for every bounded input u, then the peak output of the error between the original
and reduced model is always less than some multiple of the peak input value. In
particular, due to the assumption of linearity, when M < 1, such a bound provides
a guarantee that the pointwise error between y(t) and yr(t) will never be more than
a fixed percentage of the peak input value. When we denote by h(t) the impulse
response operator of the original system and by hr(t) the impulse response of the
reduced order system, it is a well-known fact (see, for instance, [17]) that the smallest
value of M as given in (1.4) is the L1 norm of the error system with impulse response
h(t)− hr(t):

(1.5) ||h− hr||1 =

∫ ∞

0

|h(t)− hr(t)|dt.

Hence, the problem of finding a reduced order model of a given LTI system for which
the peak error between the original output and reduced order output is small can be
posed in the following manner: for a given order N , find some choice of hr(t) of order
N for which ||h − hr||1 is small. Ideally, one would like to find that choice of hr(t)
of order N such that the quantity ||h − hr||1 is minimized, and that is the essential
viewpoint that we take here. While the problem of finding that choice of hr(t) which
globally minimizes the L1 norm of the error system is nonconvex and intractable to
compute from a practical perspective, we focus here on methods that search for local
minimizers over a sufficiently rich set of choices for hr(t) so as to provide reduced order
approximations that are both sufficiently accurate and computationally tractable.

The problem of producing reduced order models via minimization of the L1 norm
appears to have been seldom considered in the literature. El-Attar and Vidyasagar
[9] first considered this problem in the context of some examples. In the discrete-time
setting, Sebakhy and Aly [25] consider a simple form of impulse response truncation
to minimize the l1 norm of an error sequence (||e||1 =

∑∞
k=1 |ek|). The closest work

to the problem we consider here appears to be a result from the system identification
literature in which a reduced order model for a discrete-time system which minimizes
the l1 norm of an error metric is computed via a linear programming approach [16].
While there are substantial differences with the class of problems being considered
here as compared to [16], the underlying technique of casting such problems as linear
programs is the same. As we discuss in a later section, a major advantage of this
approach is that mixed problems in which the L1 norm of an error system is minimized
subject to a set of moment matching constraints can be easily handled by our approach
since the set of moment matching conditions can be cast as a set of linear constraints
on a set of decision variables. Also, as a byproduct of our approach, the tools we
develop here will be able to perform MOR for infinite dimensional systems, a stark
contrast to standard moment matching and SVD-based tools which operate only on
finite order state space descriptions.
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1.4. Document outline. Section 2 outlines the L1 norm minimization algo-
rithm and provides a complete characterization of the linear programming (LP) prob-
lem that is solved at each iteration. In section 3, we introduce the family of basis
functions over which the minimization algorithm searches to produce a reduced order
model with small L1 error norm. Moreover, we show that this family of basis functions
is sufficiently rich by proving that a certain large class of LTI systems can be approx-
imated with arbitrary accuracy via an expansion of these basis functions. Section 4
describes how to incorporate moment matching constraints into the LPs to formu-
late mixed moment matching/norm minimization problems and formally proves that
arbitrary accuracy via an expansion of basis functions is retained even in the pres-
ence of moment matching constraints. Section 5 summarizes the overall algorithm
and describes some practical considerations in the problem of selecting an optimal
basis from the family of basis functions under consideration. Section 6 illustrates the
techniques described herein for three examples, two taken from the solution of a one-
dimensional heat equation, and one taken from the circuits world. Section 7 briefly
describes how to extend the methods here—designed only for single-input, single-
output (SISO) systems—to a multi-input, multi-output (MIMO) generalization. We
provide concluding remarks in section 8.

2. Algorithm for reduced order modeling via L1 norm minimization.
In this section, we describe a technique for computing reduced order models via an
attempt to minimize the L1 norm of the corresponding error system h(t)− hr(t). We
first consider a relaxed problem in which the reduced order model is constrained to
be a linear combination of a fixed set of basis functions and show that this problem
can be cast as an LP. We then turn to the process of selecting an appropriate set of
basis functions, and show that this problem can be efficiently cast as the solution of
a (relatively) small number of LPs.

2.1. Relaxation: Approximation via a fixed basis. At the heart of the
algorithm we propose is an approximation scheme where the reduced order model is
constrained to be a linear combination of a fixed set of functions:

(2.1) hr(t) =

N∑
k=1

akgk(t),

where gk(t), k = 1, 2, . . . , N , represent a set of fixed, known functions with finite L1

norm, and where the parameters ak ∈ R represent a set of decision parameters that we
wish to select to make ||h− hr||1 as small as possible. As we show here, this problem
can be cast as an LP that can be solved using existing software packages. The reader
unfamiliar with linear programming is referred to [3] for an excellent introduction to
the subject.

To begin, note that the problem of minimizing ||h− hr||1 is equivalent to

min

∫ ∞

0

z(t)dt,(2.2)

subject to z(t) ≥ h(t)−
N∑

k=1

akgk(t),

z(t) ≥ −
(
h(t)−

N∑
k=1

akgk(t)

)
,
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since the two inequality constraints are equivalent to z(t) ≥ |h(t) − hr(t)|, and the
choice of z(t) which minimizes the integral expression must achieve this inequality
with equality.2 Note that (2.2) represents an infinite dimensional LP with decision
variables ak and z(t) for all t ≥ 0. In order to solve this LP, we must resolve two
issues: first, the infinite dimensional LP must be replaced by an appropriate finite
dimensional LP to fit the form of standard LP solvers. This will be achieved by
gridding the real time axis in an appropriate manner. A second issue arises from the
fact that the horizon in (2.2) is infinite. In practice, it is possible to solve a finite
horizon LP whose optimal solution is an upper bound for the optimal solution of the
original infinite horizon problem. We deal with the second of these issues first.

To begin, note that for any T > 0,∫ ∞

0

z(t)dt =

∫ T

0

z(t)dt+

∫ ∞

T

z(t)dt(2.3)

≤
∫ T

0

z(t)dt+

∫ ∞

T

|h(t)|dt

+
N∑

k=0

|ak|
∫ ∞

T

|gk(t)|dt,

where the inequality follows via repeated applications of the triangle inequality to
|h(t)−∑N

k=1 akgk(t)|. By introducing the slack variables wk ≥ |ak| for k = 1, 2, . . . , N ,
(2.3) leads to the following LP:

min

∫ T

0

z(t)dt+ h̄+

N∑
k=1

βkwk,(2.4)

subject to z(t) ≥ h(t)−
N∑

k=1

akgk(t),

z(t) ≥ −
(
h(t)−

N∑
k=1

akgk(t)

)
,

wk ≥ ak,

wk ≥ −ak,

where T is a specified horizon, k = 1, 2, . . . , N , and where

h̄ =

∫ ∞

T

|h(t)|dt,(2.5)

βk =

∫ ∞

T

|gk(t)|dt.

By virtue of (2.3), the minimal cost of the LP in (2.4) provides an upper bound for
the minimal cost of the original infinite horizon LP of (2.2). Note that for any given
choice of h(t), the quantity h̄ is a constant, and hence may be removed from the cost
function (in practice, T can usually be chosen sufficiently large such that the effect of
h̄ on the minimal cost in (2.4) is negligible).

2The reader unfamiliar with such arguments is referred to pp. 15–21 of [3] for a discussion of
slack variables.
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Now, to relax the infinite dimensional LP to a finite dimensional version, we
introduce a grid on the time axis. While there are many ways to do this, here we
consider the simplest method of imposing a grid that is uniformly spaced over the
horizon length T . If we let Δ represent the sampling interval, and define zm = z(mΔ),
hm = h(mΔ), gkm = gk(mΔ), andM = �T/Δ	, then an approximation of the integral
in (2.4) via a Riemann sum leads to

min Δ

M∑
m=1

zm +

N∑
k=1

βkwk,(2.6)

subject to zm ≥ hm −
N∑

k=1

akgkm,

zm ≥ −
(
hm −

N∑
k=1

akgkm

)
,

wk ≥ ak,

wk ≥ −ak

for all k = 1, 2, . . . , N and m = 1, 2, . . . ,M . Here we assume that the value of Δ is
taken sufficiently small (corresponding to a fine grid) so that the difference between
the true value of the integral in (2.4) and the approximate value in (2.6) is negligible.
As before, the decision variables ak provide the relative weights for each basis function
gk(t) in our approximation hr(t), and the auxiliary parameters wk and zm determine
an upper bound on the minimal L1 norm to the original problem of (2.2). The above
LP can be written in multiple forms, and can be transformed into whatever form is
most convenient for the particular software package that is used to provide a numerical
solution.

2.2. L1 norm minimization algorithm. The LP formulation of the last sec-
tion begs the question: how does one choose the basis functions gk(t)? First, recall
that since we are trying to represent our approximate impulse response hr(t) as a fi-
nite dimensional model (meaning that the corresponding transfer function Hr(s) is a
rational function of s), hr(t) must be expressible as a linear combination of (possibly
complex) exponential terms. This suggests that the functions gk(t) should involve
“simple” linear combinations of exponential terms. Perhaps the simplest choice is
gk(t) = exp(−αkt), Re{αk} ≥ 0 so that our approximation takes the form

(2.7) hr(t) =

N∑
k=1

ake
−αkt.

The problem of trying to choose the values of ak and αk to globally minimize ||h−hr||1
is a nonconvex optimization problem, and hence is practically not solvable. If, how-
ever, we focus our attention on local minimizers, one näıve method of computing an
upper bound on the global minimum is as follows. Whenever the values of αk are
fixed, the problem of approximating h(t) via the hr(t) as in (2.7) is an LP. By gridding
each value of αk ∈ C over some bounded region in the closed right half-plane, one
could solve a sequence of LPs (one for each possible combination of grid points) and
use the values of ak and αk which achieve the smallest cost over all the LPs that are
solved.
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While simple in concept, the above algorithm is computationally expensive since
the number of LPs which must be solved grows exponentially with the order of ap-
proximation N . Indeed, if we grid each value of αk using P points, we must solve a
total of PN LPs. For a value of N = 10, even using a coarse grid of P = 10 points
per value of αk results in 1010 LPs to be solved.

As an alternative to the above basis, consider the following choice:

(2.8) gk(t) = tk−1e−αt,

where the single parameter α again satisfies Re{α} ≥ 0. Such a choice for gk(t) results
in an approximation of the form

(2.9) hr(t) =
(
a1 + a2t+ · · ·+ aN tN−1

)
e−αt,

i.e., a polynomial in t multiplying a single decaying exponential term. The compu-
tational advantage of using such a basis is, in fact, quite large. For a given value of
N , rather than having to grid N independent values and solving PN LPs, one need
only grid the single scalar variable α resulting in P LPs. Hence, again considering
the case where P = N = 10, we reduce the number of LPs we need to solve from 1010

down to 10 by using the choice of gk in (2.8). Note that we can generalize this idea
to consider approximations of the form

(2.10) hr(t) =

J∑
j=1

pj(t)e
−αjt,

where the functions pj(t) are polynomials of fixed order with undetermined coeffi-
cients. Such an approximation would require J independent grids, and assuming that
J 
 N , one still gains a large computational advantage over the original method
since P J 
 PN .

With such a large savings in computation, it is natural to wonder whether the
choice of (2.8) is somehow too narrow to accurately approximate a sufficiently rich
class of signals. Fortunately, the answer to this question is no. Focusing on the case of
approximation with just a single exponential parameter α, we show in the next section
that there is a broad class of signals which can be well-approximated by expressions of
the form shown in (2.9). More formally, we show that, under some mild assumptions,
one can find a sequence of approximations of the form (2.9) for increasing N such
that the L1 norm of the error system h− hr converges to 0 as N → ∞.

3. Convergence of approximations: Ritz basis. In this section, we prove
that the approximations as determined by the choice of gk(t) in (2.8) converge in the
L1 norm to a given impulse response h(t) under some mild assumptions. Since the
main result of this section is an adaptation of existing results in functional analysis,
we review those results first.

3.1. Convergence in L2: Ritz approximations. Let the space L2(R+) de-
note the set of Lebesgue measurable functions f(t) defined for t ≥ 0 such that the
corresponding L2 norm of f

(3.1) ||f ||2 =

(∫ ∞

0

|f(t)|2dt
) 1

2

is finite. A well-studied problem in the systems and control community is that of
approximating a given f ∈ L2(R+) via an expansion of the form

∑
akgk(t), where
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Gk(s), the Laplace transform of gk(t), is a rational function of s. Convergence in these
problems is naturally measured in terms of the L2 norm; we say that the expansion
converges if the sequence of partial sums

(3.2) fN (t) =

N∑
k=1

akgk(t)

converges in the L2 norm:

(3.3) lim
N→∞

||f − fN ||2 = 0.

A basis for L2(R+) is said to be complete if there exists a sequence of coefficients ak in
the expansion of (3.2) such that the ||f − fN ||2 converges to 0 for every f ∈ L2(R+).
Complete bases, therefore, provide a set of elements that can well-approximate a wide
range of functions. Perhaps the most popular basis for L2(R+) is the Laguerre basis,
whose elements are described in the frequency domain via

(3.4) Gk(s) =

√
2α

s+ α

(
s− α

s+ α

)k−1

, k = 1, 2, . . . ,

where α satisfies Re{α} > 0. A complete basis [18], the Laguerre basis is often the
basis of choice for establishing theoretical statements due to the orthonormality of
the basis functions: ∫ ∞

0

gj(t)gk(t)dt =

{
0, j �= k,
1, j = k.

Because of this property, the coefficients ak in the series expansion can be computed
via a projection of f onto the corresponding basis functions gk(t).

While useful for theoretical statements, the Laguerre basis is less practical for
numerical computation, as it can be empirically noted that LP solvers often run
into numerical difficulties when dealing with the impulse responses gk(t) for large k.
Moreover, easy-to-obtain upper bounds on the quantity

βk =

∫ ∞

T

|gk(t)|dt

(from (2.5) of the last section) are difficult to obtain and/or are very conservative,
making for overinflated estimates of the minimal cost in the LP of (2.6). A more
useful basis for our purposes here is a “deorthogonalized” version of the Laguerre
basis known as the Ritz basis , whose elements are described in the frequency domain
via

(3.5) Gk(s) =

(
α

s+ α

)k

, k = 1, 2, . . .

for Re{α} > 0 with corresponding impulse responses

(3.6) gk(t) =
αk

(k − 1)!
tk−1e−αt, k = 1, 2, . . . .
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Observe that the impulse responses of the Ritz basis vectors are scaled versions of the
proposed basis vectors of the last section in (2.8). Also, note that when α is real, βk

can be calculated exactly as

(3.7) βk = e−αT
k∑

j=1

(αT )j−1

(j − 1)!
< 1 ∀k ≥ 1.

When α is complex, exact expressions for βk are complicated, but simple upper bounds
are readily obtainable. Indeed, if we denote α = −αr + jω, where the real param-
eter αr is positive, decomposition of the exponential terms into terms of the form
exp(−αrt) cos(ωt) and exp(−αrt) sin(ωt) yields upper bounds on βk by taking advan-
tage of the fact that

(3.8)

∫ ∞

T

∣∣tke−αrt cos(ωt+ φ)
∣∣ dt ≤ ∫ ∞

T

tke−αrtdt

for any values of ω, φ ∈ R.

3.2. Remark: Ritz approximations for model reduction. Our main task
in this paper is to produce finite order models which approximate a higher (possibly
infinite) dimensional model. Finite truncations of Ritz approximations provide for
reduced order models by approximating the original model by a finite order model
with repeated poles, with the order of the reduced order model being equal to the
term of highest degree in the truncation. While we shall not discuss this here, it is a
relatively straightforward task in theory to convert truncations of Ritz approximations
into finite order state space models, which is often a much more convenient form for
simulation.

3.3. Ritz approximation convergence in L1. We denote by L1(R+) the set
of Lebesgue measurable functions f(t) defined for t ≥ 0 for which ||f ||1 is finite. In
this section, we prove that a broad subset of L1(R+) can be well-approximated via a
Ritz approximation such that the partial sums of the form (3.2) (where gk(t) represent
the Ritz basis vectors of (3.6)) converge in the L1 norm: ||f − fN ||1 → 0 as N → ∞.
The specific subset of L1(R+) we consider is described in the following proposition,
whose proof can be found in the appendix.

Proposition 3.1. Consider the set S of functions f ∈ L2(R+) which satisfy the
condition that f(t) = O(t−γ) for γ > 1, where f(t) = O(g(t)) is equivalent to the
existence of constants C > 0, t0 ≥ 0 such that

|f(t)| ≤ C|g(t)| ∀t ≥ t0.

Then S ⊂ L1(R+).
The set S encompasses a wide range of functions that are interesting from an

application standpoint, including all bounded functions that decay exponentially, and
all bounded functions that decay polynomially with exponent strictly greater than 1.
Note that S is broader than either of these two common subclasses and includes, for
instance, unbounded functions such as

f(t) =

{
t−

1
4 , 0 < t ≤ 1,
0, otherwise.

The ultimate goal of this section is to prove that there exists a Ritz approximation
for every f ∈ S which converges in the L1 norm. We first prove this result for a
particular subset of S, and then we use this result to prove the result for all f ∈ S.
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Proposition 3.2. Consider the subset of S̄ ⊂ S defined via f ∈ S̄ iff f ∈ S
and f(t) = O(t−2). For every f ∈ S̄, there exists a Ritz approximation such that the
sequence of partial sums

(3.9) fN =
N∑

k=1

ak
αktk−1

(k − 1)!
e−αt

satisfies ||f − fN ||1 → 0 as N → ∞.
Equipped with Proposition 3.2 (whose proof can be found in the appendix), we

now prove the first main theoretical result of the paper.
Theorem 3.3. For every f ∈ S, there exists a Ritz approximation such that the

sequence of partial sums of (3.9) satisfies ||f − fN ||1 → 0 as N → ∞.

Proof. First, note that for any function f̂N̂ (t)

||f − fN ||1 =

∣∣∣∣∣
∣∣∣∣∣f − f̂N̂

t
γ
2 + 1

+
f̂N̂

t
γ
2 + 1

− fN

∣∣∣∣∣
∣∣∣∣∣
1

(3.10)

≤
∣∣∣∣∣
∣∣∣∣∣f − f̂N̂

t
γ
2 + 1

∣∣∣∣∣
∣∣∣∣∣
1

+

∣∣∣∣∣
∣∣∣∣∣ f̂N̂
t
γ
2 + 1

− fN

∣∣∣∣∣
∣∣∣∣∣
1

.

Note that the first norm on the right-hand side of (3.10) satisfies

(3.11)

∣∣∣∣∣
∣∣∣∣∣f − f̂N̂

t
γ
2 + 1

∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣
∣∣∣∣ 1

t
γ
2 + 1

∣∣∣∣
∣∣∣∣
2

∣∣∣∣∣∣(t γ
2 + 1)f − f̂N̂

∣∣∣∣∣∣
2
.

Since ||(t γ
2 +1)−1||2 ≤√γ/(γ − 1), the left-hand side of (3.11) can be made arbitrarily

small for sufficiently large N̂ if the rightmost L2 norm of (3.11) can be made arbitrarily
small. Since f(t) = O(t−γ), (t

γ
2 +1)f(t) = O(t−

γ
2 ), and it follows that (t

γ
2 +1)f(t) ∈

L2(R+). Hence, there exists a Ritz approximation f̂N̂ (t) for which the left-hand side

of (3.11) can be made arbitrarily small for N̂ sufficiently large.

Now, for every fixed N̂ , note that the Ritz approximation f̂N̂ (t) is a finite sum of
exponentially decaying terms. It follows that

f̂N̂(t)

t
γ
2 + 1

= O(t−2).

(Functions which decay exponentially decay polynomially for any rate, hence they
decay at a rate of t−2; dividing an exponentially decaying function by t

γ
2 +1 does not

change this fact.) Hence, the result of Proposition 3.2 applies, and there exists a Ritz
approximation fN(t) such that the rightmost norm of (3.10) can be made arbitrarily
small for N sufficiently large. It thus follows that there exists a Ritz approximation
fN (t) such that ||f−fN ||1 can be made arbitrarily small for N sufficiently large.

Theorem 3.3 states that for any f ∈ S, by taking N sufficiently large, one can
always well-approximate f in the L1 norm via a Ritz approximation for any value
of the parameter α of (3.6). Hence, given a desired tolerance ε for which one desires
||f − fN ||1 < ε, the process of finding some reduced order model which satisfies a
given tolerance constraint is easy: pick some value of α, and keep increasing the order
N until the desired error tolerance is achieved. It should be apparent, however, that
certain values of the parameter α are better than others in the sense that a poor choice
of α could lead to a very large value of N that is required to satisfy a given tolerance
constraint which potentially defeats the point of model reduction. We discuss the
issue of trying to find “good” choices of α in a later section.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRAMEWORK MOR MIXED MOMENT MATCHING PEAK ERROR 757

4. Addition of moment matching constraints. We now turn to the incorpo-
ration of moment matching constraints into the L1 minimization algorithm discussed
in section 2. Note that for any fixed basis choice gk(t), a moment matching constraint
of order m at a frequency s0 takes the form

(4.1)
1

m!
H(m)(s0) =

1

m!

N∑
k=1

akG
(m)
k (s0),

where H(m)(s) and G
(m)
k (s) represent the mth derivatives of the Laplace transforms

of the original impulse response h(t) and basis functions gk(t), respectively. When
using the Ritz basis, the moments of Gk(s) can be calculated explicitly as

(4.2) G
(m)
k (s) =

⎧⎪⎨
⎪⎩
(

α
s+α

)k
, m = 0,

(−1)mi(i+1)···(i+m−1)αk

m!

(
1

s+α

)k+m

, m ≥ 1.

Hence, whenever the value of the parameter α in the Ritz approximations is fixed, each
moment matching constraint is a linear equality constraint on the decision variables
ak and can be added as an additional constraint to the corresponding LP formulation:

min Δ

M∑
m=1

zm +

N∑
k=1

βkwk,(4.3)

subject to zm ≥ hm −
N∑

k=1

akgkm,

zm ≥ −
(
hm −

N∑
k=1

akgkm

)
,

wk ≥ ak,

wk ≥ −ak,

H(msl
)(sl) =

N∑
k=1

akG
(msl

)

k (sl),

where sl ∈ C, l = 1, 2, . . . , L, represent a set of (possibly repeated) frequencies for
which we wish to match the mslth moment of the original and reduced order models.

4.1. Convergence of Ritz approximations with moment matching con-
straints. We now prove that the addition of moment matching constraints does not
affect our ability to well-approximate in the L1 norm via Ritz approximations. In fact,
as we show in the next two propositions, every well-defined moment of a function f(t)
with Laplace transform F (s) has a Ritz approximation whose corresponding moment
converges to the true moment of F (s).

Proposition 4.1. For every f(t) ∈ S with Laplace transform F (s), the following
statements hold:

1. The zeroth order moment of F (s) at frequency s0 exists for all s0 with Re{s0} ≥
0. Moreover, any Ritz approximation fN (t) for which ||f − fN ||1 → 0 also
satisfies the condition

(4.4) FN (s0) → F (s0)
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for all s0 in the closed right half-plane, where FN (s) denotes Laplace trans-
forms of fN (t).

2. The mth order moments of F (s) at frequency s0 exists for all m = 1, 2, . . . for
all s0 with Re{s0} > 0. Moreover, any Ritz approximation fN (t) for which
||f − fN ||1 → 0 also satisfies the condition

(4.5)
1

m!
F

(m)
N (s0) → 1

m!
F (m)(s0)

for all s0 in the open right half-plane.
The proof of this statement can be found in the appendix.
If f(t) decays polynomially, higher order moments may not exist when Re{s0} = 0

since tmf(t) may grow unboundedly as t → ∞. If, however, f(t) decays exponentially,
all moments are well-defined on the jω axis. The following proposition, whose proof
can be found in the appendix, formalizes this statement.

Proposition 4.2. Consider f(t) ∈ L2(R+) and f(t) = O(e−γt), γ > 0. The
mth order moments of F (s) (the Laplace transform of f(t)) at a frequency s0 with
Re{s0} = 0 exist for all m = 0, 1, . . . . Moreover, any Ritz approximation which
satisfies the condition ||f − fN ||1 → 0 also satisfies the condition

(4.6)
1

m!
F

(m)
N (s0) → 1

m!
F (m)(s0)

for all s0 on the jω axis.
Using Propositions 4.1 and 4.2, we can now prove that the addition of a finite

number of moment matching constraints does not affect the ability of ||f − fN ||1 to
converge to 0.

Theorem 4.3. Consider f(t) ∈ S. Subject to a finite number of well-defined
moment matching constraints (as given by Propositions 4.1 and 4.2), there exists a
Ritz approximation fN for which ||f − fN ||1 → 0.

Proof. From the results of Propositions 4.1 and 4.2, it follows that for every
ε > 0, there exists an Nth order Ritz approximation fN(t) =

∑N
k=1 akgk(t) with N

sufficiently large such that

∫ ∞

0

∣∣∣∣∣f(t)−
N∑

k=1

akgk(t)

∣∣∣∣∣ dt ≤ ε,(4.7)

∣∣∣∣∣F (msl
)(sl)−

N∑
k=1

akG
(msl

)(sl)

∣∣∣∣∣ ≤ ε(4.8)

for l = 1, 2, . . . , L, where the L lower inequalities represent moment matching con-
straints of order msl at frequency sl. For each L, define

(4.9) εl = F (msl
)(sl)−

N∑
k=1

akG
(msl

)(sl).

Clearly, |εl| ≤ ε for l = 1, 2, . . . , L. Now, suppose there exists a sequence {δk}Nk=1 such
that

(4.10)
N∑

k=1

δkG
(msl

)(sl) = εl, l = 1, 2, . . . , L



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRAMEWORK MOR MIXED MOMENT MATCHING PEAK ERROR 759

(we shall prove existence of such a sequence shortly). Then it follows that the Ritz
approximation with coefficients ãk = ak + δk satisfies each of the L moment matching
constraints. To establish convergence of the Ritz approximation with coefficients ãk
in the L1 norm, we wish to show that

(4.11)

∫ ∞

0

∣∣∣∣∣f(t)−
N∑

k=1

ãkgk(t)

∣∣∣∣∣ dt < λε

for some value of λ that does not depend on ε. We have

∣∣∣∣∣
∣∣∣∣∣f(t)−

N∑
k=1

ãkgk(t)

∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣∣
∣∣∣∣∣f(t)−

N∑
k=1

akgk(t)

∣∣∣∣∣
∣∣∣∣∣
1

(4.12)

+

∣∣∣∣∣
∣∣∣∣∣

N∑
k=1

δkgk(t)

∣∣∣∣∣
∣∣∣∣∣
1

.

The first term on the right-hand side above is upper bounded by ε by assumption.
Convergence, hence, reduces to showing that the second term on the right-hand side
can be made sufficiently small.

Note that the coefficients δk satisfy a linear constraint of the form

(4.13) AN δ̄ = ε̄,

where δ̄ =
[
δ1 δ2 . . . δN

]
, and ε̄ =

[
ε1 ε2 . . . εL

]
. We assume that the L

rows of A are linearly independent (otherwise, there is a redundant moment matching
constraint that can be removed).

We now show that for any N ≥ L, there exists δ̄ which satisfies (4.13) and which
makes the rightmost term of (4.12) sufficiently small. Let N0 ≥ L. Then there exists
L linearly independent columns of AN0 . Consider a map N0(j) for j = 1, 2, . . . , L
such that the L × L matrix AL

N0
whose jth column is the N0(j)th column of AN0 is

invertible. Similarly, let δ̄L be defined via δ̄Lj = δ̄N0(j). Then the system of equations

AL
N0

δ̄L = ε̄ is solvable for δ̄L and can be written explicitly as δ̄L = (AL
N0

)−1ε̄. It

follows that ||δ̄L||∞ ≤ ε||(AL
N0

)−1||∞. Now, observe that the vector δ̄ with

(4.14) δ̄k =

{
δ̄Lk , k = N0(j), j = 1, 2, . . . , L,
0, otherwise

satisfies (4.13) for every N ≥ N0. Hence, it follows that there exists a choice of the
δk’s such that

(4.15)

∫ ∞

0

|δkgk(t)|dt ≤ ε||(AL
N0

)−1||∞
∑
k

∫ ∞

0

|gk(t)|dt,

where the sum on the right-hand side is taken over only those k which can be repre-
sented as k = N0(j), j = 1, 2, . . . , L. Since the sum is finite, convergence follows.

5. Summary of algorithm and practical considerations. We begin by
briefly summarizing the steps of the algorithm we propose for producing reduced
order models with small L1 error norm subject to moment matching constraints.
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User-specified data. To begin, the user must select an order N for the reduced
order model, and a set of values A for the parameter α in the Ritz approximation of
(3.6). Additionally, the user must select a horizon time T over which the L1 norm
will be approximated, along with an appropriate grid spacing Δ with which to sample
the time axis. Smaller Δ will, obviously, provide better Riemann sum approximations
to the desired integrals, and larger T will provide less conservative upper bounds on
the L1 norm computation (reflected by the fact that the upper bound coefficients
βk of (2.5) are monotonically decreasing functions of T ). Note that, once Δ and T
have been selected, the samples hm of the original impulse response h(t) in the LP
formulation of (4.3) are automatically determined.

In addition to the above quantities, the user must also specify a (possibly empty)
set of frequencies sl and corresponding moments msl to be matched (i.e., we compute
H(msl

)(sl)).

Quantities to compute for each LP iteration. For each value of α ∈ A, one
must compute several quantities in order to set up the corresponding LP. First, one
must compute the samples gkm of the Ritz basis vectors gk(t) for k = 1, 2, . . . , N .
Also, the quantities βk must be computed as well. Finally, one must compute the
values G(msl

)(sl) that are necessary for moment matching constraints.
With all of the above quantities in place, one can loop over all α ∈ A and solve

each corresponding LP. The value of α which minimizes the cost of (4.3) yields the
minimal upper bound on ||h−hr||1, and the coefficients ak together with the transfer
functions gk(t) for this value of α determine an Nth order model hr(t) which achieves
the minimal upper bound.

5.1. Selecting the set A. The success of the above algorithm largely hinges
on the ability to select a good value of the Ritz approximation parameter α which is
directly correlated to the choice of the grid set A. In what follows, we focus on the
case where α is a real parameter, though appropriate modifications can be made in
the case that α is complex.

Perhaps the simplest way of selecting the set A is to uniformly grid the real axis:

(5.1) A = {α : α = jΔa, j = 1, 2, . . . , J} ,

where Δa > 0 and J is a user-specified constant. It is clear that smaller choices of Δa

and larger choices of J provide a finer grid of the real axis and, hence, should produce
smaller upper bounds on the minimal value of ||h− hr||1.

While simple, the above brute-force method can be computationally expensive if
the user tries to search for a relatively tight upper bound on the minimal value of
||h−hr||1. While the number of LPs which are solved grow linearly with J , it is typical
to refine a grid by dividing the value of Δa by a particular value, i.e., by replacing Δa

by Δa/2. Assuming even that the maximal value of α ∈ A does not increase during
grid refinement, this causes the corresponding value of J to grow exponentially with
successive refinements, eliminating some of the benefits of parameterizing the basis
vectors gk(t) via a single scalar.

A simple heuristic approach which bypasses some of the above difficulty is the
following: initially impose a coarse grid and refine the grid until one is fairly confident
that the sampling is sufficiently fine to be indicative of the true behavior of the minimal
cost (this can be done, for instance, by examining a graph of the minimal cost at the
sample points in the current grid). Once the grid is determined to be sufficiently
fine, one can locate an interval around which a minimizing value of α appears to lie
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and then refine the grid only in this interval. When appropriately carried out, such
a procedure can guarantee convergence only to some local minimum, rather than
the minimal value on the interval I = [Δa, JΔa] (the smallest interval containing
the original grid). Still, it has been empirically observed in multiple examples that
the minimal value of the cost function tends to vary slowly and with few changes in
monotonicity, so that carrying out a procedure in this manner is likely to converge
to the minimum on I for many problem instances. In fact, while we shall not do so
here, one can actually prove that the minimal cost varies continuously as a function
of α, which seemingly indicates further promise for convergence to a minimum on I,
but which does not, unfortunately, provide a provable guarantee.

6. Examples. In this section, we apply the techniques described in the prior
sections to three infinite dimensional examples. In each case, we compare the per-
formance of the reduced order models we obtain via mixed L1 norm minimization/
moment matching to an existing MOR method.

6.1. Example: One-dimensional heat equation. Consider a semi-infinite
rod described by the half-line x ≥ 0, and let u(x, t) denote the temperature of the
rod at position x at time t. The evolution of the temperature distribution can be
described via the one-dimensional heat equation, given by

(6.1) ut − uxx = 0.

Suppose that the temperature at x = 0 is controlled via an actuator, and that we are
interested in computing the corresponding temperature at x = 1 for all t ≥ 0. Such a
problem is of interest in the case when one wishes to control the temperature of the rod
at a certain point but can only apply heat at a different location. Subject to the initial
value constraint u(x, 0) = 0, x ≥ 0 and the boundary constraint, u(∞, t) = 0, t ≥ 0,
this corresponds to finding the transfer function and/or impulse response operator
from u(0, t) to u(1, t). A simple calculation shows that the transfer function H(s) is
given by

(6.2) H(s) � U(1, s)

U(0, s)
= e−

√
s,

where U(0, s) and U(1, s) represent Laplace transforms of u(0, t) and u(1, t), respec-
tively. The corresponding impulse response h(t) is given by

(6.3) h(t) =
1√
4πt3

e−
1
4t , t > 0.

It is apparent that the transfer function H(s) is infinite dimensional since it is not
a rational function of s. Also, observe that h(t) decays as 1/t1.5, which satisfies the
condition of Theorem 3.3 so that h(t) can be well-approximated in the L1 norm via
a Ritz approximation. Suppose that we are interested in producing a finite order
approximation hr(t) to the original impulse response h(t) such that ||h − hr||1 is
small, and also such that the DC gain of the original and reduced order models are
equal (i.e., H(0) = Hr(0) = 1).

Using the procedure described in the paper, we found a 10th order model Hr(s)
with a Ritz parameter value of α = 0.5. A plot of the original impulse response h(t)
and the reduced order impulse response hr(t) is shown in Figure 6.1. This value of α
was found to produce an upper bound on the error norm ||h− hr||1 of 0.206. Hence
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Fig. 6.1. Impulse responses of the original and reduced order systems using the mixed
L1/moment matching algorithm.
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Fig. 6.2. Step responses of the original and reduced order systems using the mixed L1/moment
matching algorithm.

for any bounded input x(t), the outputs of the original model y(t) and the reduced
order model yr(t) satisfy the bound

(6.4) |y(t)− yr(t)| ≤ 0.206||x||∞.

In particular, when ||x||∞ = 1, we find that |y(t) − yr(t)| ≤ 0.206 for any bounded
input with peak magnitude of 1.

The step responses of both the original and reduced order system are depicted
in Figure 6.2. Observe that the reduced order step response approaches the final
steady-state value of 1 much more quickly than the step response of the original
system. This should be expected since the original impulse response h(t) of (6.3)
decays polynomially as 1/t1.5, whereas the Ritz approximation decays exponentially.
Nevertheless, the steady-state values are both equal to 1 by design, since we imposed
the constraint that H(0) = Hr(0). Moreover, (6.4) guarantees that the approximate
response will never deviate from the true response by more than 0.206. Indeed, one
can verify by examining the graph of Figure 6.2 that the maximum deviation between
the two step responses is roughly 0.09 < 0.206.

As a comparison, we also computed a 10th order reduced order model via a mo-
ment matching method. Specifically, we represented Hr(s) = p(s)/q(s), where q(s) =
(s+0.5)10 (hence using the same pole locations as we used above for the L1/moment
matching technique), and we chose the numerator p(s) such that H(s) = Hr(s) at
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Fig. 6.3. Impulse response of the reduced order system obtained via moment matching.

the frequencies s = 0, j, 2j, 3j, 4j, and 5j. In other words, we found a reduced order
model whose frequency response matches the original frequency response at several
points in a low frequency range. The reduced order impulse response that is obtained
via this method is shown in Figure 6.3. While the steady-state value of the step re-
sponse of this reduced order system is equal to the steady-state value of the original
system, it is clear that the step responses will deviate very significantly during the
transient phase. One finds that the step response of this approximate system dips to
a value of approximately −3800 at t ≈ 18s. Indeed, the value of ||h − hr||1 for this
reduced order model is roughly 7600!

6.2. Example: One-dimensional heat equation with two repeated poles.
This next example is a continuation of the last example where we now find a reduced
order model with not one but two repeated poles. More formally, we consider a
reduced order model hr(t), which can be written in the form

(6.5) hr(t) = p1(t)e
−α1t + p2(t)e

−α2t,

with Re{α1},Re{α2} > 0, and where p1(t) and p2(t) are polynomials of order N1 − 1
and N2− 1, respectively. In the frequency domain, this can be expressed equivalently
as

(6.6) Hr(s) =
Q1(s)

(s+ α1)N1
+

Q2(s)

(s+ α2)N2
,

where Q1(s) and Q2(s) are polynomials of degree less than or equal to N1 and N2,
respectively. It is clear from both (6.5) and (6.6) that the order of the resulting
approximation is equal to N1 +N2.

Some comments are in order. First, note that considering reduced order models
of the forms (6.5) and (6.6) does not require additional convergence theorems to
validate this choice as a “good” form. For instance, if one takes Q1(s) = 0 in (6.6),
the model reduces to the single-α model for which all of the prior theoretical results
on convergence have been established. Hence, since existence of a finite order model
which well-approximates the original impulse response h(t) can be guaranteed when
Q1(s) = 0, it can clearly also be guaranteed when this restriction is lifted.

The motivation for considering a model of the forms (6.5) and (6.6) lies in that,
while in theory one can always find a reduced order model by considering a single Ritz
expansion (i.e., a single value of the parameter α), in practice, the order N which may
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Fig. 6.4. Impulse response of the reduced order system obtained using two repeated poles.

be required to obtain a reasonably small approximation error may be prohibitively
large. Thought about in another way, if the desired order of a reduced order model
N is fixed, it may be possible to lower the approximation error by considering models
which have multiple repeated poles. An intuitive interpretation of this idea, in the
context of the impulse response h(t) of (6.3) (depicted in Figure 6.1), is as follows. It

is clear that for sufficiently large times t, h(t) ≈ 1/
√
4πt3, which decays monotonically

and without oscillation. Hence, it is reasonable to expect that, for large times, h(t) is
well-approximated by a low frequency signal. On the other hand, at times close to 0,
h(t) is not monotonic (the “hump” centered close to t = 0.25), and it is reasonable
to expect that some higher frequency component may be needed to well-approximate
h(t) in this region.

As in the last section, we search for a 10th order model (i.e., N1 + N2 = 10)
which attempts to minimize the L1 norm of the error approximation subject to the
DC moment matching constraint Hr(0) = H(0) = 1. Experimentation with different
values of N1 and N2 shows that N1 = 3 (for the low frequency component) and
N2 = 7 (for the high frequency component) are good values relative to the other
integer combinations. Gridding the corresponding values of α1 and α2 on the real
line, we find that the values α1 = 0.1 and α2 = 3.25 achieve an L1 error norm upper
bound of 0.13, less than 2/3 of the bound we found using a single value of α. The
original and reduced order impulse responses obtained using this two repeated pole
approximations are shown in Figure 6.4.

At this point, it is natural to question whether the use of a few repeated poles—as
opposed to considering techniques which allow the pole locations to all be completely
different—is constraining in terms of the minimum achievable L1 norm. As we saw
above, considering a model with two distinct, real poles decreased the L1 norm by
roughly 33%. By how much could the L1 norm by reduced if we considered 3, 4, or
up to 10 distinct pole locations in the form of the reduced order model? While a
formal answer to this is currently unknown, we present the following example (pro-
vided by one of the anonymous reviewers) as a means of providing intuition on this
topic. If one ignores the moment matching constraint as an explicit constraint in
the design procedure, then one can use the vector-fitting method of [15] (a method
which is also capable of dealing with infinite dimensional systems, albeit completely
in the frequency domain) to obtain a 10th order reduced model, as well. One of the
advantages to this method is that the pole locations are unconstrained and are deter-
mined by the vector-fitting procedure. The resulting reduced order impulse response
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Fig. 6.5. Impulse response of the reduced order system obtained using the vector-fitting method
of [15].

obtained by using this method is as shown in Figure 6.5. The corresponding upper
bound on the L1 error norm in this case can be computed to be roughly 0.114, a close
to 13% improvement over the two-repeated-pole approximation we consider above.

The “punchline” of the above comparison is mixed: on one hand, it is clear that
there is some room for improvement by considering additional poles in the form of
the approximation, a result which should not be surprising. On the other hand, if the
result of this particular example is indicative of the typical performance gain obtained
by considering unrestricted pole locations (a very open question), then the utility of
expanding the number of distinct poles in the approximation scheme may not be of
great practical use. For one, as mentioned previously, the computational complexity
involved in solving the corresponding sequence of LPs grows exponentially with the
number of distinct poles. From a different perspective, however, if one decides to
“jump ship” and use different methods entirely—such as the vector-fitting method
shown above, since it produces a smaller L1 error norm in this example—then one
must abandon the idea of considering mixed problems which consider both error
norms and moment matching constraints. Indeed, the vector-fitting method of [15]
cannot incorporate moment matching constraints directly and, hence, the quality
of the moments of the resulting reduced order model cannot be guaranteed. This,
in turn, relates to the question of what the “best” MOR method is for a particular
problem and that, in turn, is often a function of the user. For this particular example,
it is arguable that a DC moment matching constraint is quite important since, in
practice, step inputs are very common in heat applications and, hence, accuracy
of the corresponding steady-state solutions to step inputs is critical. For another
application with the same transfer function, however, matching the DC gain may not
be as important and other methods may be more appropriate.

6.3. Example: Bandpass filter with time delay. Figure 6.6 depicts a circuit
consisting of an RLC bandpass filter, along with an ideal transmission line. The
transmission line is modeled mathematically as a pure time delay tD. For a unit time
delay, and for the values R = 2, L = 1, C = 1/10001, the input-output transfer
function of this circuit is given by

(6.7) H(s) � Vout(s)

Vin(s)
= e−s 2s

(s+ 1)2 + 10, 000
,
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Fig. 6.6. Schematic of a circuit with an RLC bandpass filter and an ideal transmission line.
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Fig. 6.7. Impulse responses of the original model and the reduced order model produced via the
mixed L1/moment matching algorithm.

with corresponding impulse response

(6.8) h(t) =

{
e−(t−1) (2 cos 100(t− 1)− 0.02 sin100(t− 1)) , t ≥ 1,
0, t < 1.

It is clear that H(s) is infinite dimensional due to the presence of the term
exp(−s), and our goal here is to find a finite dimensional approximation with small er-
ror norm ||h−hr||1 subject to the additional constraint that theH(s) andHr(s) match
exactly at the resonant frequency of the RLC filter, i.e., that H(100j) = Hr(100j).
Because of the highly oscillatory nature of the impulse response, approximating the
original h(t) by a Ritz approximation whose parameter α is real is unwise, since this
would require a very high order polynomial multiplying exp(−αt) to match h(t) with
any reasonable amount of accuracy. Through trial and error, it was quickly discovered
that using a value of α = −αr + 100j, where αr is a positive real parameter, appears
to yield the best results, an unsurprising phenomenon since the system naturally
oscillates at 100 rad/sec.

Using a 12th order model, we find that a value of αr = 3.25 yields an error norm
upper bound of ||h− hr||1 ≤ 0.297. The impulse response of the original and reduced
order models is shown in Figure 6.7. While it is difficult to resolve finer features in
this graph, observe qualitatively that hr(t) is small on the interval 0 ≤ t ≤ 1, where
h(t) is identically 0 and quickly “catches up” to the oscillatory portion of h(t) for
t ≥ 1.

As a comparison, we created an alternative reduced order model using the follow-
ing technique: the time delay in (6.7) was approximated via a high order (50th order)
Padé approximation, and the resulting system was reduced to a 12th order system
using a truncated balanced realization (TBR) algorithm. The essential reasoning be-
hind such an approach is that TBR algorithms are designed to produce small error
norms, where error is measured in terms of power instead of peak amplitude. Intu-
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Fig. 6.8. Comparison of responses of the original model, L1/moment matching reduced order
model, and Padé/TBR reduced order model for the input cos 100t.

itively speaking, by comparing the behavior of the minimal L1 norm approaches here
to an SVD-based method, we are trying to assess whether SVD-based methods pro-
duce small L1 norms “automatically” without explicitly incorporating such measures
into their cost criterion. Since TBR operates on finite dimensional LTI systems, one
must first approximate the nonrational portion by a rational approximation before
applying the algorithm.

Performing the above process, we found that the reduced order model obtained
via this alternate method produces an L1 error norm ||h − hr||1 = 8.889, more than
an order of magnitude larger than the reduced order model obtained via the mixed
L1/moment matching algorithm. Also for comparison, we computed the response of
the original system, reduced order system obtained via L1/moment matching, and
the reduced order system obtained via the Padé approximation and TBR for the
input cos 100t. The responses we obtained are depicted in Figure 6.8. Observe that
the responses of the original model and reduced order model obtained via mixed
L1/moment matching track each other exactly. Such tracking is guaranteed from the
moment matching constraint H(100j) = Hr(100j). By contrast, the response of the
system produced via the Padé approximation and TBR exhibits a phase lag.

One of the primary reasons as to why the TBR algorithm fails on this particular
example is due to the fact that the 50th order Padé approximation does not well-
approximate the time delay over the bandwidth of interest. By examining the Bodé
phase curves of a true unit time delay and a 50th order Padé approximation, one
will find that the two are in close agreement up to approximately 70 rad/sec, beyond
which the two phase curves begin to vary significantly. Because the bandpass filter
has a resonant frequency at 100 rad/sec, the Padé approximation is not sufficient
to capture the behavior of the system at the set of frequencies where it is most
“active.” While this may appear to be shear negligence, this example was constructed
to illustrate a “soft” point: the reason that a Padé approximation of order higher than
50 was not used to approximate the time delay before applying TBR was that the
MATLAB routine that was used to find the Padé approximation (the standard pade

command in the LTI toolbox) suffered numerical instabilities when the order was
increased significantly beyond this range (the author noticed that the resulting TBR
reduced order model was unstable starting with Padé approximations of order 55).
While it is possible to circumvent this issue by developing more numerically stable
Padé approximation and TBR software routines, the necessity of having to create
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new computational machinery to handle this issue is clearly undesirable, particularly
when there is another method that circumvents entirely the need to find a Padé
approximation in the first place.

6.4. General remarks. The computation for both of the examples presented
above was performed in MATLAB using the freeware sedumi as the core LP solver
engine. For a given order of approximation N , each example required solving for no
more than 10–15 values of the Ritz parameter α before the improvement in the L1

error norm ceased to be significant.

The order N in each of these examples was chosen somewhat arbitrarily. While
larger N and longer horizon times T did indicate that the upper bounds on the error
norms were strictly decreasing, the run time of each LP became significantly slower
beyond certain thresholds since the computer system would run out of cache memory.
The value of N was, therefore, kept not-too-large in order to be able to carry out the
necessary computations quickly. It is an important area of future research to devise
computationally efficient ways to cast and solve the core linear programs that are
solved at each iteration of the algorithm.

While perhaps diabolical to say, it is the hope of the author that by reading
this Example section, the reader is left with more questions than answers. The main
goal of this exposition is to provide a new perspective on ways to assess the quality
of a reduced order model (measured here as peak-to-peak error), and to show that
there exists a rudimentary method of posing such problems in a manner which is
computationally tractable and which possesses good theoretical properties (to show
that the method is “not bad”). Clearly, it will be important to determine when the
method described herein has practical benefit for particular classes of applications,
but the examples provided here do not provide detailed comparisons. Rather, they
serve to demonstrate some of the potential benefits and drawbacks of the proposed
method as a means of motivating future research.

7. Extensions to multi-input, multi-output systems. While we have fo-
cused our discussion around SISO systems, the techniques discussed here can be
readily applied to MIMO systems as well. The changes to the algorithms in moving
from SISO to MIMO are primarily centered in the formulation of the corresponding
LP problems, so we touch upon that briefly here.

A MIMO LTI system with impulse response matrix H(t) has L1 norm given by

(7.1) ||H||1 = max
i

∑
j

∫ ∞

0

|hij(t)|dt,

where hij(t) represents the (i, j)th entry of H(t). Again, assuming a fixed set of basis
functions gk(t), our task is to find a matrix Hr(t) with (i, j)th entry hij

r (t) of the form

(7.2) hij
r (t) =

Nij∑
k=1

aijk gk(t)

such that ||H − Hr||1 is minimized. We can cast this minimization problem in the
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following manner:

min C,(7.3)

subject to C ≥ ci,

ci =
∑
j

cij ,

cij =

∫ ∞

0

∣∣∣∣∣∣hij(t)−
Nij∑
k=1

aijk gk(t)

∣∣∣∣∣∣ dt.
Each cij represents the cost functional for a single SISO L1 norm minimization prob-
lem. Hence, one can introduce slack variables and set up moment matching constraints
for each cij , as presented in the prior sections.

8. Conclusion. We have introduced a new framework for model order reduction
of LTI systems that is well-suited for simulation purposes. The framework, which
can preserve key frequency characteristics of the original model while simultaneously
minimizing a bound on the “closeness” of the original and reduced order responses in
a pointwise sense, can be implemented efficiently using a relatively small number of
user-specified iterations, as demonstrated by three specific examples.

The primary concern of the methods shown here is likely to be the issue of gridding
the parameter space to find a local minimum. While this is computationally tractable
in low-dimensional parameter spaces, it is desirable to utilize methods which eliminate
exhaustive gridding procedures whenever possible. Some preliminary work to this
effect has recently been considered in [4], where a nonlinear programming (NLP)
formulation (in which the value of the Ritz parameter α is a decision parameter)
is examined. Because the value of α in this NLP is a decision parameter, explicit
gridding is eliminated, but convergence of the corresponding algorithm to a local
minimum is no longer guaranteed. The manuscript [4] examines the behavior of the
corresponding NLP for multiple examples.

Appendix. Proofs of technical statements.

Proof of Proposition 3.1. Wemust show that every f ∈ S satisfies f ∈ L1(R+).
To begin, note that if ||f ||1 exists, then

(A.1) ||f ||1 =

∫ t0

0

|f(t)|dt+
∫ ∞

t0

|f(t)|dt,

where t0 is defined as in Proposition 3.1. By virtue of the Cauchy–Schwartz inequality,
the first integral in (A.1) satisfies

(A.2)

∫ t0

0

|f(t)|dt ≤ √
t0

(∫ t0

0

|f(t)|2
) 1

2

< ∞,

since f ∈ L2(R+). The second integral in (A.1) satisfies

(A.3)

∫ ∞

t0

|f(t)|dt ≤
∫ ∞

t0

Ct−γdt =
Ct1−γ

0

γ − 1
,

since γ > 1. Since both quantities on the right-hand side of (A.1) are bounded above,
f ∈ L1(R+).
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Proof of Proposition 3.2. We first introduce the notation f̂N (t) = (αt +
1)fN(t), where α is as in (3.9). For every N ∈ Z+, as a result of the Cauchy–Schwartz
inequality,

(A.4) ||f − fN ||1 =

∣∣∣∣∣
∣∣∣∣∣f − f̂N

αt+ 1

∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣
∣∣∣∣ 1

αt+ 1

∣∣∣∣
∣∣∣∣
2

∣∣∣∣∣∣(αt+ 1)f − f̂N

∣∣∣∣∣∣
2
.

Notice that since ||(αt + 1)−1||2 = 1/
√
α, convergence in the L1 norm will follow

if f̂N (t) converges to (αt + 1)f(t) in the L2 norm. Indeed, since f(t) = O(t−2),
(αt+ 1)f(t) = O(t−1), and, hence, (αt+ 1)f(t) ∈ L2(R+). Therefore, it follows from
the standard results on L2 theory presented at the beginning of section 3 that there
exists a Ritz approximation f̂N (t) which converges to (αt+ 1)f(t) in the L2 norm.

What remains to be shown is that fN(t), itself, can be written as a Ritz approxi-
mation. If we assume that fN (t) has a Ritz approximation for the same value of α in

(3.9) as the Ritz approximation f̂N (t), and if we denote the corresponding expansion

coefficients of fN (t) and f̂N (t) by ak and âk, respectively, then multiplying the series
expansion of fN (t) by αt+ 1 and equating coefficients yields the relationship

(A.5) âk = ak + kak−1.

Since (A.5) implies that â1 = a1, the above relationship can be solved recursively
for ak via ak = âk − kak−1, which shows that fN (t) can be expressed as a Ritz
approximation.

Proof of Proposition 4.1. We prove only the second item as the proof of the
first item is similar. In what follows, we scale all moments by m! for notational
simplicity. To begin, note that the scaled mth moment at a frequency s0 can be
written as

(A.6) F (m)(s0) = (−1)m
∫ ∞

0

tmf(t)e−s0tdt.

Hence, the mth order moment at frequency s0 is well-defined if the integral on the
right-hand side of (A.6) converges. We have

(A.7)

∣∣∣∣
∫ ∞

0

tmf(t)e−s0tdt

∣∣∣∣ ≤ sup
t≥0

|tme−s0t|
∫ ∞

0

|f(t)|dt,

because Re{s0} > 0, tme−s0t is bounded. Moreover, f(t) ∈ L1(R+) via Proposi-
tion 3.1; hence, the moment is well-defined.

To prove convergence of the Ritz approximation moments to the true moment,
let fN (t) be any Ritz approximation which converges in the L1 norm. Now

∣∣∣F (m)(s0)− F
(m)
N (s0)

∣∣∣ =
∣∣∣∣
∫ ∞

0

tm(f(t)− fN (t))e−s0tdt

∣∣∣∣(A.8)

≤ sup
t≥0

|tme−s0t| ||f(t)− fN(t)||1.

Hence, convergence of the moment follows via convergence of ||f − fN ||1.
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Proof of Proposition 4.2. Again, we scale all moments by m! for notational
simplicity. By the assumed exponential decay of f , there exists a constant C such
that |f(t)| ≤ Ce−γt for all t ≥ 0. Hence, with Re{s0} = 0

(A.9)
∣∣∣F (m)(s0)

∣∣∣ =
∣∣∣∣
∫ ∞

0

tmf(t)e−s0tdt

∣∣∣∣ ≤ C

∫ ∞

0

tme−γtdt.

Since the rightmost integral converges for all m ≥ 0, we conclude that the mth order
moments exist and are well-defined at all frequencies along the jω axis.

To prove convergence of the moments, if we denote D = |F (m)(s0) − F
(m)
N (s0)|,

observe that for any ε > 0

D =

∣∣∣∣
∫ ∞

0

tm(f(t)− fN(t))e−s0tdt

∣∣∣∣(A.10)

=

∣∣∣∣
∫ ∞

0

tme−εt(f(t)eεt − fN(t)eεt)e−s0tdt

∣∣∣∣
≤ sup

t≥0

∣∣tme−εt
∣∣ ∫ ∞

0

|f(t)eεt − fN(t)eεt|dt.

The supremum in the last line above exists for every m ≥ 0 for any ε > 0. Hence, con-
vergence reduces to finding a choice of ε sufficiently small such that ||feεt−fNeεt||1 →
0. Note that for any ε > 0, we have

∫ ∞

0

|f(t)eεt − fN(t)eεt|dt ≤
∫ ∞

0

|f(t)− fN (t)|dt+(A.11)

≤
∫ ∞

0

|f(t)− fN (t)|(eεt − 1)dt.

The leftmost integral above can be made arbitrarily small for a sufficiently large choice
of N by the assumed convergence of the Ritz approximation in the L1 norm. To prove
that the rightmost integral can be made arbitrarily small, note that

||(f − fN )(eεt − 1)||1 =

∫ T

0

|f(t)− fN (t)|(eεt − 1)dt(A.12)

+

∫ ∞

T

|f(t)− fN (t)|(eεt − 1)dt

for any T > 0. Now, since f(t) = O(e−γt) and fN(t) is a finite sum of exponentially
decaying functions, there exists γ′ > 0 such that f(t) − fN(t) = O(e−γ′t). Hence
(f(t) − fN(t))(eεt − 1) = O(e(−γ′+ε)t), which decays exponentially for ε sufficiently
small. Hence, by choosing T sufficiently large, the rightmost integral in (A.12) can
be made arbitrarily small for N sufficiently large. Now, observe that

(A.13)

∫ T

0

|f(t)− fN (t)|(1 − eεt)dt ≤ |eεT − 1|
∫ T

0

|f(t)− fN (t)|dt.

Since limε→0 e
εT = 1 for every fixed T , one can choose ε sufficiently to make the

right-hand side of (A.13) arbitrarily small for sufficiently large N .
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